On weighted Bergman kernels of bounded domains
نویسندگان
چکیده
منابع مشابه
Weighted Bergman kernels on orbifolds
We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.
متن کاملWeighted Bergman Kernels and Quantization
Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...
متن کاملToeplitz Operators and Weighted Bergman Kernels
For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...
متن کاملA Remark on Weighted Bergman Kernels on Orbifolds
In this note, we explain that Ross–Thomas’ result [4, Theorem 1.7] on the weighted Bergman kernels on orbifolds can be directly deduced from our previous result [1]. This result plays an important role in the companion paper [5] to prove an orbifold version of Donaldson theorem. In two very interesting papers [4, 5], Ross–Thomas describe a notion of ampleness for line bundles on Kähler orbifold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1994
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-108-2-149-157